
Charles Simonyi, the recently returned space tourist, is an intriguing character. So much so that a lengthy,
and suitably fascinating, profile was published in Technology Review. (See
http://www.technologyreview.com/Infotech/18047/). A sidebar, “Intentional Programming Explained”
(http://www.technologyreview.com/Infotech/18047/page13/) contained a throwaway line that suggested
that UML models could not be executed. This is simply not true, as I will outline in this white paper. The
white paper focuses on embedded systems, because that is the market in which I work, but the ideas apply
(and have been applied) in many domains.

For more background on the discussion triggered by Technology Review, and I personally got involved,
please see the appendix.

Embedded Systems in UML

Stephen J Mellor
StephenMellor@StephenMellor.com

Freeter

Executable UML models allow the designer to verify the design before any code is written. A translation
phase, using a set of rules, builds a system in a strict and repeatable manner. The engineer has full
control over these rules to enable generation of the most appropriate code for a particular architecture.

Rather than bit-fiddling with the generated code, a more structured and repeatable process is now used.
If there is a problem with the behavior of the application, then the model is changed accordingly, and if
there is a problem with the performance of the code, then the rules are adjusted. This separation of the
application (using the design tool and verify tool) from the architecture (processing the design rules)
results in a more maintainable and efficient system.

Using UML in Embedded Systems

There are many ways in which the UML can be said to be used. Most people use UML informally. That
is, they sketch out a few diagrams on the proverbial beer mat and discuss their abstractions with their
peers (sic). From there, coding proceeds directly. Martin Fowler’s book, UML Distilled [1], takes this
point of view.

Others use UML as a blueprint that specifies software structure. There is an intended near one-to-one
correspondence between the UML diagrams and the code. A tool can generate code frames from these
models, and the developer fills in the rest using the models as a guide. Note that if the developer finds a
better solution while coding, the model will no longer reflect the code. Users of this approach must have a
detailed understanding of their code structure and the corresponding elements in UML. They’ll find UML
in a Nutshell [2] useful in this (though the authors do not explicitly promote this approach.)

Others go further. The developer can add code directly to the model making the model executable. Note
that if the generated output is changed by hand, the model no longer reflects the code. This may then lead

Embedded Systems in UML Page 2
By Stephen Mellor

to a desire to “round trip” and generate a model from the code, which only makes sense so long as the
model bears a one-to-one relationship to the code. This point of view is promoted by Bruce Powel
Douglass. [3]

The fourth use is translatable models that have action language as a part of the model. The action
language is executable, but it can also be translated into any implementation. A given model may be
translated into an implementation that has many tasks or one, many processors or one, or even into
different hardware/software partitions. In contrast to the second and third uses, there is no necessary
correspondence between the structure of the model and the structure of the implementation except that the
behavior defined by the model must be preserved. Mellor and Balcer hold this viewpoint 1, as described in
Executable UML: A Foundation for Model-Driven Architecture [4]

Rationale

In a code-based approach to development exemplified by using sketches or blueprints, we often construct
documents or notes that are reviewed with the clients and experts. Their efforts clarify just what is to be
built, expand our (the developers’) understanding of the problem and associated technology, and remove
errors. However, even with all our best efforts and theirs, it is often the case that most errors are
discovered during the first system build.

The inevitable result is that we must scramble to fix the errors in the short window before delivery. The
sixteen-hour days so necessitated are painful for us, but they are also painful for the business as it is
forced to explain why a product, already marketing at fever pitch is not available for customers.

Moreover, the verification gap—the difference between when an assertion is made and when it can be
shown to be true or false—between those documents and something that runs can be several months,
during which time we expend effort on building the wrong thing. It is this fact that partially explains
Barry Boehm’s famous curve, which shows an exponential cost-to-fix as the project proceeds from
conception to deployment. [5]

These problems can be addressed by building executable models. The key word here is executable. An
executable model, because it executes, can be shown to be correct or not, right from the moment it is built.
Moreover, because the model can be supplied with test cases, we can close the verification gap, a key
reason for the deprecation of modeling by many of signatories to the Agile Alliance [6].

Translation of models also offers platform independence—the notion that we can build models without
committing to a software architecture. This is the essence of translatability: by separating out the
application logic from the manner in which it is implemented, we can specify the behavior of a system so
that it can be targeted to several implementations, some of which have not yet been conceived.

Building an Executable Model

Application models are executable; it is this fact that allows us to extend verification up the design flow
so that verification may occur before coding. An executable model can be described in as few as three
primary models as illustrated in Figure 1. Other diagrams are used to support construction of the primary
models, to present overviews, and for translation, [For a complete description, see 4; for an extended

1 Martin Fowler has independently arrived at this characterization, though he does not call out “translatable” as
different from “executable”.

Embedded Systems in UML Page 3
By Stephen Mellor

example, see 7] The first part is the declaration of the conceptual entities in a particular subject matter;
these are represented using a Unified Modeling Language (UML) class diagram. It is critical to remember
that this use of a “class diagram” says nothing about the software structure. In an executable model, a
“class diagram” is only a convenient representation for a conceptual grouping of information and
behavior.

Behavior over time is represented using a subset of a UML state chart diagram (the second part of Figure
1). There is a state-chart diagram for each object of a class2. All the dynamic behavior in an application
model takes place as a part of a state machine.

An executable model is meaningless without rules that define execution. In executable UML, each state
machine executes concurrently with all other state machines. They communicate by sending signals that
define precedence relationships between sequences of actions. Just as with class diagrams, the state chart
diagram does not imply an implementation; signals may be implemented in any manner that preserves the
desired precedence of actions.

Figure 1: An application model example

Actions are core artifacts of translatable UML because they define behavior, and are implementation
independent, in that they do not assume a software structure. Consider, for example, a function that sums
the total time used in the last n phone calls. Looping through a linked list of recent calls is one way to
implement this, but that definition relies of a specific software structure: a linked list. UML actions are

2 More accurately, there may be one state chart for each instance and there may be one state chart for the behavior of
the collection of instances as a whole. Moreover, instances may participate in subtyping hierarchies. See [4] for
more details.

Oven

Cooking Step

powerLevel
cookingTime

Lifecycle for
Cooking Step

Action for state Executing

Executing

Entry/

 select one magnetron
 related by oven->[R4];
 magnetron.powerOutput =
 self.powerLevel;
 generate powerOn to magnetron;

R

startStep

finishStep

Ready

Complete

Executing

Embedded Systems in UML Page 4
By Stephen Mellor

cast so we first get the times for each of the calls, then sum them up. This subtle difference in expression
allows us to access stored data in any way we choose, so as to get the best performance.

Verifying an Executable Model

Verification of application models is exactly that: It verifies the behavior of the application models and
nothing else. It does not check that the system will be fast enough or small enough; it checks only that the
application does what you (your client and your experts) want.

Verification is performed by model execution. When we construct a model, such as that shown in Figure
1, we declare the types of entities whose behavior exists in the system, but models execute on instances.
To test the behavior of the example in Figure 1, therefore, we need first to create instances. Action
language can do that; it can also set up initial values for those instances.

A special TestClass can be set up with a series of states for each test. The first state creates the object
instances on which the test will execute. Then, we send a signal to one of the created objects to cause it to
begin going though its lifecycle. Of course, actions in that object may be signal-sends that cause behavior
in other objects. Eventually the cascade of signals will cease and the system will once again be in a steady
state, ready for another test.

Each test can be run interpretively. Should the test fail, the model can be changed immediately and the
test rerun. Care should be exercised to ensure the correct initial conditions still apply. When each test run
is complete, we need to establish whether it passed. This can also be achieved using action language that
simply checks expected values against actuals. A report can be produced in regression-test mode that
states whether each test passed or failed.

It is useful to be able to ‘run’ the whole test at once; to ‘jog’ through each state change, and to ‘step’
through each action. Animated state machines make for a cute demo, but we have found it more useful to
see a trace of actions, which can be examined automatically later.

Selecting test cases is a whole other topic. There are many theories on how best to test a system ranging
from “just bang on it till it breaks” through to attempts at complete coverage.

Translating an Executable Model

A model compiler comprises a collection of reusable components together with a set of formalized rules
on how to embed the application into it. The reusable components should include ways to access program
data such as lists and trees, to store persistent data, to sequence actions, to activate and deactivate tasks
and so on. The formalized rules show the usage of the reusable components in context. For example, if a
task synchronizes with others by sending messages of a particular form, then the formalized rule shows
the construction of the message, and the call to the message handling service. The content of the message
is left as a placeholder to be filled in from the application.

We base the concept of a model compiler on the observation that to understand the fundamental
architecture of a system, we need only to understand the structure of each of its prototypical elements and
how they interrelate. For example, to understand the design of a Unix-based application, we need only
understand pipes and filters. We don't need to understand the details of the semantics of an application–in
fact they are a hindrance.

Embedded Systems in UML Page 5
By Stephen Mellor

The details of model compilation are beyond the scope of this paper, but Figure 2 summarizes them. The
meaning of the application is modeled and stored in a repository, as shown on the left-hand side of the
diagram. This meaning includes all the concepts described in the sections above: class, state, action, and
so on. (The graphical layout is also stored, but for model translation this is not relevant.) For example,
the action language Create object instance myOven of Oven; is stored as a CreateObjectAction,
a reference (myOven), and a reference to the class Oven. This may be translated into myOven = new
Oven; some list management, or a malloc of the appropriate number of words, or even a VHDL entity.

The model compiler is on the right-hand side of the diagram. It consists of a library of reusable elements,
such as list or memory management functions, and a set of rules. Each rule generates text. For example,
the rule that creates objects would read CreateObjectActions and create an object in C++ for each one.
The rule language has been standardized by the Object Management Group, and can be found in [8].

The result of applying the rule (the Generator oval in the center of the diagram) is text. This text can be
compiled with the libraries in the model compiler, other libraries, legacy code, and so on. The result is a
program, or set of programs, that can be compiled, linked, and run.

Figure 2: The structure of Model Compilation

There is little value, therefore, in thinking of a design as the repetitive use of the design decisions as they
relate to the application components. This is time-consuming, tedious, and an invitation to unnecessary
and unwanted creativity. Instead, we should think of design as the definition of the reusable components
and how to use them in the context of an application. Note that this approach scales well, so that a project
can make best use of experienced designers, because the model compiler contains only information about

Application Models
Generator

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

Libraries, Legacy or
Hand-written code

Model Compiler

Rules

Application Models

Execution
Engine

Code for
the System

Application Models
Generator

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

Underlying Semantics
Repository

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying

102 1
102 2
102

Libraries, Legacy or
Hand-written code

Model Compiler

RulesRules

Application Models

Execution
Engine

Execution
Engine

Code for
the System

Code for
the System

Embedded Systems in UML Page 6
By Stephen Mellor

the system design. The approach is also platform independent, meaning that a model expressed in this
manner can be translated onto any platform. All you need is its model compiler.

For example, let us consider an implementation for the state machine diagram based on the construction
of a state-event matrix which, :for the CookingStep, might look like this:

static const StateNumber_t Cooking_Step_StateEventMatrix[3][3] = {
 /* Column Headings */
 /* ‘startStep’, ‘interrupt’, ‘finishStep’ */
 /* Row 1: Cooking_State_1 'Ready' */
 { Cooking_State_2, IS_IGNORED, Cooking_State_3 },
 /* Row 2: Cooking_State_2 'Executing' */
 { IS_IGNORED, Cooking_State_1, Cooking_State_3 },
 /* Row 3: Cooking_State_3 'Complete' */
 { IS_IGNORED, IS_IGNORED, IS_IGNORED }
};

Note that the matrix has entries for every combination of the arrival of an event in a state. In some cases,
such an event can be known to be an error; in others (such as repeated pressing of the Start button), it can
safely be ignored. This information can be filled in using an appropriate interface, though it is not
absolutely necessary.

The dispatching code for the CookingStep is as follows:

 this_state = instance->m_object_state;
 next_state = CookingStep_StateEventMatrix[this_state][event_number];
 if (next_state <= 3)
 {
 /* Execute the state action and update 'object state' */
 (*CookingStep_Actions[next_state])(instance, event);
 instance->m_object_state = next_state;
 }

Note that we have hard-coded the number of events as 3. We could have followed standard coding
practice and defined a constant, but this only adds work for the compiler in code that is generally never
read.

The rule that created this dispatching code looks like this:

 this_state = instance->${object_state.name};
 .invoke sem_name = GetStateEventMatrixName(object)
 next_state = ${sem_name.result}[this_state][event_number];
 if (next_state <= ${max_state.number}) {
 /* Execute the state action and update 'object state' */
 (*${action_array_name.result}[next_state])(instance, event);
 .select any final_state related by state_model->SM_STATE[R501]
 where (selected.isFinal != 0)
 .if (empty final_state)
 instance->${object_state.name} = next_state;

The first line is simply text—the output is exactly the same as the input.

Embedded Systems in UML Page 7
By Stephen Mellor

The second line begins with a period (.), and is an instruction to the rule-language processor. It invokes a
function to find the name of the state-event matrix associated with the class being manipulated—in this
case, the CookingStep. (The parameter to this function is called object for historical reasons.)

The third line contains a string substitution function ${ …}. This returns the string
CookingStep_StateEventMatrix.

The fourth line also contains a string-substitution function to find the maximum value of the index into an
array of states. (You can see more clearly now why the use of a constant in the generated code is not a
coding problem.)

After a comment, we produce the code that jumps into an array of function pointers containing the work
to be carried out in the action.

Then we find the final state of the state machine, if any.

And then—if none such exists—update the state of the instance. Different processing is required if there
is a final state, but you get the picture.

For your interest, here is the code for one of the actions, with the original action shown as a comment.
The strange names (MW_MT, for example) are generated from abbreviations for each of the class names.
MW, for example, identifies the MicroWave subsystem, and MT identifies the Magnetron.

The last two lines create an event (the ninetieth, apparently) and sends it on.

/* SELECT ONE magnetron RELATED BY oven->MW_MT[R4] */
 magnetron = oven->mc_MW_MT_R4;

 /* ASSIGN magnetron.powerOutput = SELF.power_level */
 magnetron->m_powerOutput = self->m_power_level;

 /* GENERATE MW_MT1:'power_on'() TO magnetron */
 {
 Event_t *event90=NewEvent((void*) magnetron, &MO_MW_MT_Event1_sc);
 SendEvent(event90);
 }

There is now a standard language for writing these rules. It can be found in [9]

Modifying the Architecture

One reason why you might modify the architectural rules is performance. If you do modify the rules, you
have to verify they are correct. One approach is to compile a test model using the modified rules and see
that its output is the same as the unmodified version. Alternatively, we can also borrow an old
(programming-language-) compiler writer’s trick: Build a test model that exercises every element of the
language, in this case the modeling language. Finally, we can inspect the output, either manually, or by
automatic comparison to an example that is known to be correct. For example, if we know we intend to
generate a line DigitalOutputFunction(bitValue, register); then we can write a short script
to compare outputs.

Embedded Systems in UML Page 8
By Stephen Mellor

An example of modification to the model compiler for performance purposes is memory management.
Rather than using a standard, supplied, linked list to hold instances, you may choose to allocate fixed-size
blocks of memory and maintain an index. This will maintain constant-speed memory allocation, and
reduce fragmentation, at the possible expense of more memory. Your choice.

We need also to extend that test model to account for elements that are marked to use new rules. For
example, using an array instead of a list will require some correlation between the array index and the
objectIDs used to identify other instances. Getting these rule interactions right can be a chore, but it’s
better than integrating developers’ disparate creations at the end of the project!

In more cases that you might suspect, there is no reason to modify the rules. Over the ten years since we
have been producing fast, small-footprint model compilers for embedded systems, we have extended and
enhanced the rules significantly. Because our “tricks” are expressed as rules, they can be propagated
across the system quickly without increasing the size of code caused by duplication.

For example, although the CookingStep generates a sparse state-event matrix, a more realistic example
might have a sequence of a dozen states, each triggered by a different event. This would lead to a 12x12
matrix, with 132 empty cells. To save memory, we might choose instead to use a linked list of triples
(CurrentState, Event, NextState) and search it until we find a match for CurrentState and
Event. We then invoke the action for NextState and change state to it. This involves a rewrite of the
rule for the creation of the state-event matrix (not unreasonably), but once done it applies to all state
machines.

We can also write a rule that determines if a matrix will be sparse or dense, and pick which generation
rule to apply.

Conclusion

This translation technology relies on the separation of application from system architecture. It is
analogous to separating a programming language from the program. We describe the application in a
subset of UML that is sufficiently precise to be executed. One product, the Verifier, interprets the models
and a set of initial conditions to allow for immediate online debugging of requirements. Once the models
are correct, they are translated into implementation using a model compiler. If you wanted to deploy a fast,
distributed, transaction-safe with rollback environment, you can use a model compiler that implements
this. If you wanted to deploy to a small, embedded real-time environment, you’d use a different one.
Model compilers exist for web apps, using Java; generating hardware; and so on.

The model compiler cannot know everything. For example, UML has attributes, but it doesn’t know
whether they’re transient or you need to store them. The model compiler you select will provide some
number of storage mechanisms (possibly zero), and it will export a set of “mark types” that you can use to
select which mechanism to use. These are analogous to compiler flags, or the ‘inline’ keyword in C-based
languages (though we would make ‘inline’ a mark type and then list externally all the functions to be
compiled inline.)

These three things—models, model compilers, and marks—are sufficient to build applications, define
system architectures, and show how one relates to the other, respectively. The technologies are in place,
working, in use, and yielding results. Today. You can find out more by reading the appendix, which also
refers to two of my books.

Embedded Systems in UML Page 9
By Stephen Mellor

The value of this approach lies in the translation rules. Although execution is important and a major step
forward from using the UML as a sketch or blueprint, it does not enable platform independence. While
this term is often bandied about, as usual in this business, it has several meanings. We mean it in exactly
the way real-time and embedded developers mean it: that we can write a “program” without specifying
how the software is to be organized. This allows us to write it once and maintain a single model, even as
our product’s technology changes.

Moreover, we can use the model compiler repeatedly in several unrelated systems, thus reducing costs
significantly.

Acknowledgments

Cortland Starrett of Mentor Graphics Corporation for the examples and acting as reviewer.

References

[1] UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition by

Martin Fowler (Addison-Wesley Professional)

[2] UML in a Nutshell by Dan Pilone, Neil Pitman (O’Reilly Media)

[3] Real Time UML: Advances in the UML for Real-Time Systems, Third Edition, by Bruce Powel

Douglass (The Addison-Wesley Object Technology Series)

[4] Executable UML: A Foundation for Model-Driven Architecture, Mellor and Balcer, (Addison-

Wesley Professional)

[5] Boehm and Basili, Software Defect Reduction Top Ten List. Computer Vol. 34, January 2001

[6] www.aanpo.org The Agile Alliance website

[7] Executable UML: A Case Study, by Leon Starr

[8] http://www.omg.org/cgi-bin/doc?ad/2006-09-03

Embedded Systems in UML Appendix 10
By Stephen Mellor

Appendix: Some History

I was pointed to the offending article by the Chairman of the OMG, Dr Richard Soley. Various promoters
and vendors of executable and translatable models wrote a letter to the publication, which you can read at
http://www.omg.org/trletter.html. We received a gracious reply from the author, Scott Rosenberg, who
apologized for the error, explaining that a last-minute edit “was trying, imperfectly, to say that there is no
automated or “just press this button”-style way to transform a UML diagram into working software.”

This is not true either, so I dashed off a short note that said, in essence, “the hell we can’t.” Again, the
author responded graciously asking for more information. By this time, we were holding a conversation
by email, and the tone is informal and personal. I have cleaned it up slightly, as we all read more than
enough formal papers.

Here is my letter:

This work has been going on for at least fifteen years. For some history, you might find
http://www.devx.com/enterprise/Article/10717/1954?pf=true interesting.

During this time, several companies have sprung up that employ this technology. Kabira Technologies
(http://www.kabira.com/) sell a suite of model compilers that allow you to build UML models and
translate them directly into code. They employ an abstract typed action language that “knows about”
UML, while complex comprehensive “details” are left to the model compilers. Kabira’s targets market is
fast, distributed systems that require transaction safety with rollback (vertical markets include telephone
billing, stock trades, that sort of thing.) Ensuring transaction safety is not at all easy, and it is extremely
error prone. But Kabira lets you identify the boundaries of the transaction (if different from default
assumed transactions), and it does all that work for you. They get about 7-10 lines of difficult C++ for
each line of action language. I am a member of their Technical Advisory Board.

My own company, Project Technology, founded in 1983, on the other hand, focused on real-time and
embedded horizontal markets. Our flagship model compiler produces small-footprint C for embedded
devices. The first version of this was released ten years ago. Since then, it has undergone repeated
optimizations that make the code faster and smaller than can be produced by hand. Remember: The first
SPEEDCODING/FORTRAN compilers were initially suspected of being slow, even though produced
better code than 99% of developers. Details on the model compilers below, where I describe the
technology a bit.

Project Technology was sold to Mentor Graphics, Corp. in 2004. You can find out about their products at
http://www.mentor.com/products/embedded_software/nucleus_modeling/index.cfm. The link on the
model compilers is most appropriate for automatic generation. Mentor has recently changed its strategy
from horizontal (“we have a UML tool”) to vertical markets such as telecom and automotive. The goal is
to provide specific execution and translation capabilities in those markets, using UML, of course, but not
trying to support all the uses of UML in those markets, let alone spreading outside the real-time and
embedded space. My role has changed from employee to consultant on the horizontal issues, which I
explain as I outline the technology.

Even after fifteen years, there remain flies (or “horizontal issues”) in this ointment. Specifically, the tools
do not fit together. Even though they all use UML, each can use different subsets of UML, and as the
UML was defined without execution in mind, there is no guarantee that two interchanged models will
execute the same way. There is no common action language (!). Accordingly, in 1998, I set out to do the
following with the Object Management Group.

Embedded Systems in UML Appendix 11
By Stephen Mellor

First, in 1998, I joined the fast-growing camp of people and organizations that understood the value of a
shared general notation and admitted defeat in the notation wars. Then I set about making the UML useful
by proposing a standard action language. This proved too big to be swallowed whole, and instead we
decided to produce a standard “action model.” (Previously, the UML had six actions, the seventh being
“Uninterpretted String.” Nowhere near enough to execute.) The action model defined a complete set of
primitives, but no syntax for them. Great care was taken to ensure that these actions could also be
translated to hardware.

Then I promoted a standard for translating models to text. The examples in the appendix use our own
language; there is now a standard (and I need to get to work updating the examples!) Then, in 2004, I
started up a group to agree on a common subset of UML and to define its semantics. This group is well on
its way, and we hope to finish by the end of 2007. Finally, finally, we need a standard action language,
finally. I expect to present the Request for Proposal in June 2007.

These elements—a defined executable subset of UML, a way to translate a model into text (or into
another model), and a defined action language are enough to allow a team to produce both models and
model compilers for general use across multiple tools and multiple computational environments.

We’re not there yet, but I cannot overemphasize that we can do this today. We just don’t have a way to
interchange a common executable subset of UML models. As you know from experience with UML, the
perception of a standard is enough to increase acceptance hugely. And greater acceptance means more
tooling, and that means faster and more productive software and hardware generation with increasing
reuse. So, Yes, there is an automated or “just press this button”-style way to transform a UML diagram
into working software.

